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a b s t r a c t

Flutter of panels can be of two possible types: single mode or coupled mode flutter. Coupled

mode flutter has been thoroughly studied using piston theory, which represents air pressure

acting on the plate at high Mach numbers. Single mode flutter cannot be studied using

piston theory and requires potential flow theory or more complex aerodynamic theories.

This type of flutter occurs at low supersonic Mach numbers and is studied insufficiently. In

this paper a comprehensive numerical investigation of single mode flutter is conducted to

perform study of flutter boundaries and their transformations due to changes within the

problem parameters.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Panel flutter is a phenomenon of self-exciting vibrations of skin panels of flight vehicle at high flight speeds. Such
vibrations typically have high amplitude and cause fatigue damage of skin panels. This flutter phenomenon was first
observed during World War II; however, formal studies did not appear until the 1950s. From a mathematical point of view,
the problem of panel flutter can be studied through spectral problem for equation of plate motion in a gas flow:
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supplemented by appropriate boundary conditions at x¼0, L. Here D, L and h are plate stiffness, length and thickness,
respectively, rm is plate material density, p is unsteady gas pressure caused by plate deflection w. We assume that the
plate is stretched with in-plane tension stress s40. The pressure obtained from potential gas flow theory is a complicated
integro-differential expression in terms of w (see formula (6) below); however, in 1956 a simple approximation of the
pressure as M-1, called ‘‘piston theory’’, was derived
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where r, u and M are the flow density, speed and Mach number. The partial-differential equation resulting from the
problem (1), (2) has been studied in detail analytically (Movchan, 1956, 1957) and numerically (Bolotin, 1963; Dugundji,
1966; Hedgepeth, 1957). Many studies conducted since piston theory was derived, deal with different complications from
the elastic portion of the problem: nonlinear plate models (Bolotin, 1960, 1963; Dowell, 1966, 1974; Mei et al., 1999),
plates made of composite materials and shape memory alloys (Abdel-Motagaly et al., 1999; Bohon, 1963; Duan et al.,
2003; Zhou et al., 1995), chaotic vibrations of buckled and pre-stressed plates (Bolotin et al., 1998; Dowell, 1982).
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Nomenclature

a speed of sound of the gas flow
E Young’s modulus of plate material
D Eh3=ð12ð1�n2ÞÞ ¼ plate bending stiffness
D D=ða2rmh3

Þ ¼ E=ð12ð1�n2Þa2rmÞ ¼ dimensionless plate stiffness
h plate thickness
L plate length
L L=h¼ dimensionless plate length
M u=a¼Mach number
Mw

ffiffiffiffiffiffiffiffiffiffiffiffi
s=rm

p
=a¼ dimensionless propagation speed of long plate waves, this parameter is a characteristic of the

plate tension
u gas flow speed
w dimensionless (except Introduction) vertical plate deflection, nondimensionalized by h

m r=rm ¼ dimensionless gas density
n Poisson’s ratio of plate material
r gas density
rm plate material density
s in-plane tension stress of the plate
o dimensionless frequency, nondimensionalized by a=h
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However, the studies to date have typically not changed aerodynamic portion of the problem, piston theory (2), due to
high complexity of the exact potential flow theory.

Piston theory initially was obtained as an asymptotic expansion of the exact expression as M-1. In later studies it was
shown that piston theory is valid starting from M� 1:7 (Bolotin, 1963). Thus, it does not cover the range of low supersonic
Mach number, 1oMo1:7. Few papers among large amount of publications were devoted to study of panel flutter problem
using potential flow theory or more complex theories: Nelson and Cunnigham (1956), Dun Min-de (1958), Dowell and Voss
(1965), Dowell (1967, 1971, 1974), Yang (1975), Dong Ming-de (1984), Bendiksen and Davis (1995), Selvam et al. (1998),
Gordnier and Visbal (2001), and Hashimoto et al. (2009). In those studies occurrence of single mode flutter (also known as
single degree of freedom flutter) at low supersonic speeds was noticed, in contrast to coupled mode flutter (also referred as
coalescence flutter), which arises at higher M. Coupled mode flutter has been thoroughly studied through piston theory; it
occurs due to interaction of two plate eigenmodes. Single mode flutter is often considered as a consequence of negative
aerodynamic damping. Indeed, expansion of pressure derived from potential flow theory at low frequencies yields

pðx,tÞ ¼
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Coefficient of @w=@t, which represents aerodynamic damping, is negative if Mo
ffiffiffi
2
p

, and in this case (3) always predicts single
mode instability. However, using this simplistic approach to investigate single mode flutter results in contradictory
conclusions, such as flutter response is predicted in all plate eigenmodes with any in-plane plate loading and for any plate
lengths (even very short plates). Also for nonlinear plate models, expression (3) is inadequate for analysis of limit cycle
oscillations because amplitude growth becomes unlimited. Detailed study of single mode flutter through potential flow theory
or more complex theories has never been conducted, due to great complexity of the mathematical problem. Also, there has
been some bias in conviction, within the research being performed to date, to gloss over this type of flutter as not able to occur
in physical reality and on actual structures.

Over the last years Vedeneev (2005, 2006) studied single mode flutter of long plates using asymptotic theory of global
instability (Kulikovskii, 1966, 2006), never previously used in aeroelasticity. Note that Kulikovskii’s theory of global instability
has been successfully used in related fields (Doaré and de Langre, 2006; Peake, 2004). The asymptotic flutter criterion has been
obtained as the plate length L-1. The energy transfer mechanism between the plate and the flow has been studied in detail.
Theoretical study of limit cycle amplitude of single mode flutter (Vedeneev, 2007) has shown that increase of amplitude while
entering flutter region in the parameter space is much more rapid than for coupled mode flutter. Recent experimental study
(Vedeneev et al., 2010) has confirmed by demonstration that single mode flutter can occur in real structures.

In this paper we conduct comprehensive numerical investigation of two-dimensional panel flutter problem using
potential gas flow theory. From mathematical point of view, this problem is equivalent to those considered in Nelson and
Cunnigham (1956) and Yang (1975). However, several important characteristic features of single mode flutter were
unnoticed by previous studies but have been uncovered by Vedeneev (2005), including such items as: flutter boundaries
are not influenced by gas density (this result is in contrast to coupled mode flutter, which is highly dependent on gas
density), instability can occur in several eigenmodes simultaneously, existence of asymptotic flutter boundaries for long
plates, and effectiveness of plate tension to provide action on flutter boundaries. In order to conduct detailed investigation
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of such features, we will consider larger number of eigenmodes with wider variation of the parameters, than in earlier
studies.

Note that, as the problem is two-dimensional, the panel is considered to have an infinite aspect ratio. For rectangular
panels of medium and small aspect ratios single mode flutter region is generally smaller or may even disappear (Dowell,
1974). Thus, results of this paper are applicable to panels of high aspect ratios, whereas case of low aspect ratios is a topic
for future studies.

2. Formulation of the problem

We consider linear stability of elastic plate in a uniform gas flow. Elastic properties of the plate are defined by the
parameters D, L, h, and rm; flow parameters are the flow speed u, speed of sound a, and the flow density r. For
nondimensionalization we choose dimensionally independent parameters a, r and h, then dimensionless variables are

D¼
D

a2rmh3
, Mw ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
s=rm

p
a

, L¼
L
h

, M¼
u

a
, m¼ r

rm

:

This choice of dimensionless parameters is not typical in aeroelasticity, nevertheless, it is very efficient in study of single
mode flutter. First, the plate length L and thickness h are not included into any parameter except L (indeed,
D¼ Eh3=ð12ð1�n2ÞÞ, therefore D can be cancelled by h3), which makes possible asymptotic study as L-1. Second, gas
density r is not included into any parameter except m, which is typically very small. This allows to use m as a small
parameter in asymptotic analysis (Vedeneev, 2005, 2006), which yields the following result: single mode flutter
boundaries do not depend on m. It can be difficult to prove this results if other dimensionless parameters are chosen.
Below we will confirm the independence from gas density as a contributing factor for the single mode flutter problem for
arbitrary plate length.

The plate is mounted into an infinite absolutely rigid plane. Gas flow occupies the upper half-plane, while in the
lower half-plane constant pressure equal to undisturbed flow pressure is set (Fig. 1). Using the dimensionless variables,
rewrite (1)
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where plate deflection w is nondimensionalized by h.
Consider harmonic motion of the plate, wðx,tÞ ¼WðxÞe�iot , then substitution in the equation yields
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Unsteady gas pressure obtained from potential flow theory (Bolotin, 1963; Garric and Rubinow, 1946; Miles, 1959; Nelson
and Cunnigham, 1956) has the form
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which transforms to
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We will consider plates simply supported at both edges, therefore

W ¼
d2W

dx2
¼ 0, x¼ 0, x¼ L: ð7Þ

The problem (4), (6), (7) is eigenvalue problem for the plate in the gas flow. If at least one eigenfrequency on has
positive imaginary part, then the plate flutters; otherwise the plate is stable.
M

w(x,t)

Fig. 1. Plate in supersonic gas flow.
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Piston theory (2) can be obtained by omitting integral term in (6):

pfW ,og ¼ mMffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
�1

p �ioWðxÞþM
dWðxÞ

dx

� �
: ð8Þ

We will use piston theory (8) for comparison with results obtained through potential flow theory (6).
Note that similar problem was recently studied by Banichuk et al. (2011). However, they considered moving plate

in incompressible fluid, so that plate equation was slightly changed compared to (4), also kernel function of unsteady
pressure (5) was different and did not depend on o.

3. Numerical method

3.1. Formulation of the numerical procedure

We will use Galerkin method for analysis of the problem. Basic functions are normal mode shapes of the plate in
vacuum:

WðxÞ ¼
XN

n ¼ 1

CnWnðxÞ, WnðxÞ ¼ sin
npx

L

� �
,

where Cn are unknown constants. By substituting this expression into (4), multiplying by Wm(x), m¼ 1, . . . ,N, and integrating
from 0 to L, we obtain a homogeneous system of algebraic equations with unknowns Cn. Matrix of this system is

AðoÞ ¼KþPðoÞ� Lo2

2
I,

where K is the diagonal stiffness matrix with coefficients
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, kjn ¼ 0, jan;

P is the aerodynamic force matrix with coefficients

pjnðoÞ ¼
Z L

0
PfWn,og �Wj dx, ð9Þ

I is the unit matrix. Frequency equation, therefore, takes the form

det AðoÞ ¼ det KþPðoÞ� Lo2

2
I

� �
¼ 0: ð10Þ

Matrix PðoÞ is complex and non-symmetric, with all coefficients non-zero. Therefore, the problem is not self-adjointed,
and solutions of (10) are complex.

Iterative method is used for solving (10). Assume that we calculate n-th eigenfrequency on. As initial condition, we use

natural frequency of the plate in vacuum: o0
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðnp=LÞ4þM2

wðnp=LÞ2
q

. Next, let us have p-th approximation op
n. Define

matrix Apþ1ðop
n,o0pþ1

n Þ as follows, where o0pþ1
n is an auxiliary value used to calculate opþ1

n . All coefficients ajk, except ann,

are the same as of matrix Aðop
nÞ, while for ann we use the following expression:

ann ¼ knnþpnnðop
nÞ�

Lðo0pþ1
n Þ

2

2
, ð11Þ

where knn and pnn are the appropriate coefficients of matrixes K and P.
The equation for o0pþ1

n is

det Apþ1ðop
n,o0pþ1

n Þ ¼ 0;

it is linear with respect to ðo0pþ1
n Þ

2. Among two values of o0pþ1
n we choose the one with positive real part: Re o0pþ1

n 40.
Finally, we calculate pþ1-th approximation of on as follows:

opþ1
n ¼ ð1�KÞo0pþ1

n þKop
n,

where K is the relaxation coefficient, 0rKo1.
Iterative procedure described typically converges (see Section 3.2 below for details). However, at high M and L, when

coupled mode flutter is the primary type of instability, such a procedure could diverge. This usually happens when the first
and the second eigenfrequencies are close to each other and almost coalesce, such that the numerical solution at each
iteration may ‘‘jump’’ from one value to another. In this case expression (11) was used for both a11 and a22. Hence,
equation for o0pþ1

n , n¼1, 2 is quadratic with respect to ðo0pþ1
n Þ

2 and gives both first and second eigenvalues, which allows
to easily distinguish them and follow the same eigenvalue at each iteration.
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Iterations for on continue until the following convergence criterion is satisfied:

op
n�op�1

n

op
n

oe1:

After the convergence criterion has been achieved, the condition det Aðop
nÞoe2 is checked.

Inside of each iteration only matrix Pðop
nÞ is calculated numerically. Each coefficient pjkðo

p
nÞ requires calculation of two

integrals: inner one (6) and outer one (9). The inner integral is calculated using Simpson’s rule, the outer one is calculated
using trapezoidal rule.
3.2. Convergence of the numerical procedure

Now we will study convergence and robustness of the numerical method described. First, let us consider number of
basic functions, N, necessary to obtain accurate solution. Shown in Fig. 2 are real and imaginary parts of the first six
eigenfrequencies for parameters

D¼ 23:9, Mw ¼ 0, m¼ 12� 10�5, ð12Þ

M¼1.2, L¼300 (these parameters correspond to a steel plate in air flow at 3000 m above sea level). Maximum residual
e1 ¼ 10�5 and relaxation coefficient K¼ 0:5 are used. It is seen that N¼ nþ1 modes is enough to calculate on with high
accuracy, such that relative error of both Re on and Im on is less than 1%. In this paper we will study the first six modes;
therefore, N¼7 is enough to get appropriate accuracy. This stays true for any medium-size plates, Lo600. For higher L

more modes are necessary. For the first six modes, N¼9 gives better solution for L� 600, N¼11 for L� 700, and N¼13
for L� 800.

Next, in Fig. 3 calculated on versus maximum residual e1 ¼ 10�1, . . . ,10�9 are shown, relaxation coefficient K¼ 0:5 is
used. It is seen that e1 ¼ 10�5 is typically enough to get relative error less than 1% for n¼ 1, . . . ,6. We will use this value in
all further calculations.

Finally, in Fig. 4 influence of relaxation coefficient K is shown. For K¼ 0 at low M41 the iterative process for the first
two eigenfrequencies converges very slowly. Use of K¼ 0:25 and 0.5 forces convergence, however higher K reduces
convergence rate at higher M (it is obvious that convergence is very slow, as K-1, due to small change of op

n at each
iteration). For n42 convergence of on is much faster for any K (that is why higher modes are not shown in Fig. 4); thus
n¼1, 2 are the critical modes. For higher plate lengths ðL4400Þ distances between eigenfrequencies in the complex plane
become smaller, and the iterative procedure may converge slower or even diverge, ‘‘jumping’’ from one eigenfrequency
to another. In this case K¼ 0:7 gives more robust and faster convergence. Further for all calculations we will use
K¼ 0:0, . . . ,0:7, depending on the plate size and the current convergence rate.
4. Closed-form asymptotic solution for long plates

Before proceeding to results of calculations, let us consider flutter properties discovered in asymptotic study (Vedeneev,
2005). The problem has a large parameter L and a small parameters m. Using theory of global instability (Kulikovskii, 1966,
2006), flutter boundaries have been obtained as L-1 and m-0.
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The main idea of this theory is as follows. We are looking for solutions of the system in the form

WðxÞ ¼
X4

j ¼ 1

eikjx: ð13Þ

Each term here represents a wave running along the plate, however superposition (13) can be either standing or running
wave. Each wave number kj ¼ kjðoÞ is one of the four solutions of dispersion equation for infinite plate-flow system

Dk4
þM2

wk2
�o2�m ðo�MkÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
�ðo�MkÞ2

q ¼ 0: ð14Þ

First three terms here represent elastic and mass properties of the plate, while the last term represents the gas flow. Investigation

of branch points and cuts of kjðoÞ shows that these four solutions are analytic continuations of branches that satisfy (14) at

Im ob1 for Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
�ðo�MkÞ2

q
40 (radiation condition). Numbering of kj is such that Im k14 Im k24 Im k34 Im k4 for

Im ob1. For real o, two of these solutions tend to imaginary numbers as m-0 and correspond to spatially damping waves as
x-þ1 or x-�1. Two other solutions tend to real numbers as m-0 and correspond to harmonic waves.

Substitution of (13) into the boundary conditions yields the frequency equation. Kulikovskii (1966) proved that as
L-1 this equation has asymptotic form

min
j ¼ 1;2

Im kjðoÞ ¼max
j ¼ 3;4

Im kjðoÞ: ð15Þ

This equation defines a curve O in the complex o-plane, which does not depend neither on L, nor on boundary conditions
assigned at the plate edges. Thus, this curve is attractor of discrete spectrum of eigenfrequencies for long plates



Fig. 4. Iterative process, op
n , for relaxation coefficients K¼ 0, 0.25, 0.5, for parameters (12), L¼300. (a) M¼1.1, (b) M¼1.5.
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in a gas flow. With change of L, eigenfrequencies move along curve O, staying in its neighbourhood. If some section of O
lies in region Im o40, then eigenfrequencies lying near this section have positive imaginary part, and the plate is
unstable.

Vedeneev (2005) showed that O can have two distinct sections located in the upper half-plane, one section corresponds
to single mode flutter, the other section corresponds to coupled mode flutter (Fig. 5). According to these two sections, there
exist two regions of instability in parameter space of a plate in a gas flow. The first one is located in the lower M region, its
asymptotic instability criterion is

M4Mwþ1:

Assuming that Re on in vacuum and in the gas flow are close (this is reasonable for single mode flutter, as m51), detailed
analysis yields instability criterion of each mode: n-th mode is unstable if

Mn

noMoMnn

n , ð16Þ

where

Mn

n ¼ 1þ
ffiffiffiffiffi
ln

p
, Mnn

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þlnþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4lnþ1

pq
, ln ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Do2

0nþM4
w

q
þM2

w

2
, o0n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

pn

L

� �4

þM2
w

pn

L

� �2
r

, ð17Þ

and o0n is n-th natural frequency of the plate in vacuum. In the region (16) single-mode flutter occurs: n-th mode is
unstable ðIm on40Þ independently on others, eigenfrequencies do not approach each other during transition to
instability.
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At higher M there is a second region of instability, which has the following asymptotic form as L-1:

Mwo
ffiffiffiffiffiffi
54
p

4

 !1=3

m M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
�1

p
 !1=3

D1=6: ð18Þ

This instability region corresponds to coupled mode flutter, where two or more eigenmodes interfere with each other
during transition to flutter. Due to coalescence of eigenfrequencies, deriving asymptotic flutter boundaries of each mode is
not possible without considering the full boundary value problem.

The most interesting feature of single mode flutter criterion (16) is that it does not contain dimensionless parameter m.
This means that stability or instability itself does not depend on the flow density. However, if instability occurs in some
eigenmode, its growth rate Im on is a function of m.

5. Results of calculations

Asymptotic results described in the previous section have two sources of inaccuracy. First, use of asymptotic frequency
equation (15) instead of the full boundary value problem. Second, linear combination (13) satisfies all equations and
boundary conditions, except the rigidness condition along the plane z¼0 before the plate: wðx,tÞ ¼ 0, xo0. Let us now
consider results of numerical calculations of the full boundary value problem for arbitrary L.

5.1. Flutter boundaries and behaviour of eigenfrequencies

Analysis is conducted for a steel plate in air flow at 3000 m above sea level. The problem parameters are
E¼ 2:11� 1011 Pa, n¼ 0:3, rm ¼ 7500 kg=m3, a¼328.6 m/s, r¼ 0:91 kg=m3. First, let us consider case of unstressed plate,
corresponding dimensionless parameters are given by (12). Flutter boundaries obtained through exact potential flow
theory are shown in Fig. 6 by dashed curves. Each eigenmode has its own flutter region in M2L plane. With increase of L,
flutter critical Mach numbers Mn

nðLÞ, Mnn

n ðLÞ decrease and tend to asymptotic values predicted by (17): Mn

n-1, Mnn

n -
ffiffiffi
2
p

as
L-1. At certain L (thick dashed curve in Fig. 6) coalescence of the first and second modes and following coupled mode
flutter occur. This, however, does not affect third and higher modes, so that their single mode flutter boundaries extend to
higher L region.

In order to understand nature of single mode and coupled mode instabilities, let us consider motion of eigenfrequencies
in o-plane. For simplicity, we will watch only the first four eigenfrequencies, since the qualitative behaviour of the higher
frequencies will be the same. For L¼250, M¼1.6 all the first six eigenfrequencies lie in the lower half-plane (Fig. 7), and
the corresponding eigenmodes are damped. Keeping L constant, we will decrease M from 1.6 to 1.05. At M¼Mnn

n (upper
branch in Fig. 6) the n-th eigenfrequency crosses the real o axis and moves into the upper half-plane. The n-th eigenmode
becomes amplified. An important feature of this transition to instability is that the eigenfrequencies do not move towards
each other and do not affect each other, that is why we define this transition to instability as ‘‘single mode flutter’’. With
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further decrease of M, Im on get their maxima at decrease. At M¼Mn

n (lower branch in Fig. 6) eigenfrequencies cross the
real axis again and move into the lower half-plane; corresponding eigenmodes again become damped. Thus, n-th
eigenmode, n¼ 1, . . . ,4 is in single mode flutter at Mn

noMoMnn

n .
Results of calculations using piston theory (8) for 1:05oMo1:6 are shown in Fig. 7 by dashed curves. There is no transition

to instability: all the eigenfrequencies lie in the lower half-plane for any M from the region 1:05oMo1:6. Therefore, piston
theory is an inadequate method and cannot be used to investigate or predict the occurrence of single mode flutter.

Let us now consider transition from stability to single mode, and then to coupled mode flutter, with increase of the
plate length. Take M¼1.3 and increase L from 60 to 400. In Fig. 8(a) we observe, first, single mode instability, according to
crossing of single mode flutter boundary in Fig. 6. Second, at L� 320 coalescence of the first and the second
eigenfrequencies occurs (saying ‘‘coalescence’’ hereafter, we mean very close approach: eigenfrequencies do not merge
exactly, but pass very close to each other). Immediately after coalescence Im o1 increases very rapidly: from 4:5� 10�5 at
L¼320 to 4:77� 10�4 at L¼400, while Im o2 decreases: from 2:8� 10�5 at L¼320 to �4:08� 10�4 at L¼400. Such
behaviour is defined as coupled mode flutter. As transition to coupled mode flutter occurs from the region of single mode
flutter, coalescence occurs in the upper o-half-plane (indeed, according to Fig. 6 at M¼1.3 and increase of L we are
entering coupled mode flutter region directly from single mode flutter region). Higher eigenfrequencies ðn42Þ stay in the
upper o-half-plane without any approach to each other, thus we observe both coupled mode flutter in the first two
eigenmodes, and single mode flutter in higher eigenmodes.

Finally, we will watch motion of the eigenfrequencies in the complex plane during transition from stability directly to
coupled mode flutter. Take M¼1.6 and increase L, again from 60 to 400 (Fig. 9(a)). At 110rLr220 we observe single mode
instability in modes 4, 5, 6, according to crossing of single mode flutter boundaries in Fig. 6; modes 1, 2, 3 are stable while
Lo321. At L� 321 the first and the second eigenfrequencies coalesce, however in contrast to M¼1.3 case, coalescence occurs
in the lower half-plane. After the coalescence Im o1 increases from �2:7� 10�5 at L¼321 to 4:13� 10�4 at L¼400, while
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Im o2 decreases from �2:8� 10�5 at L¼321 to �4:69� 10�4 at L¼400. Therefore, we observe transition to coupled mode
flutter. Other eigenfrequencies (n¼3,y,6) stay in the lower o-half-plane, therefore those eigenmodes are damped at L4321.

Shown in Figs. 8(b) and 9(b) are loci of the eigenfrequencies calculated through piston theory. As before, it is seen that
there is no single mode instability, but there is coupled mode instability. Note that coupled mode instability occurs at
Mach number, which is very close to the one obtained through potential flow theory.

Another way to observe coupled mode flutter is to increase Mach number. Let us take L¼300 and increase M. Changing
M from 1.05 to 1.6, we pass single mode flutter regions of the first six modes, motion of the eigenfrequencies in the
complex plane is qualitatively close to those shown in Fig. 7. Loci of the eigenfrequencies with further increase of M, up to
2.7, are shown in Fig. 10. At M� 2:27 coalescence of the first two eigenfrequencies occurs, and the first one crosses
real axis at M� 2:29, almost immediately after the coalescence. Shown by dashed curves in Fig. 10 are loci of the
eigenfrequencies, obtained using piston theory. It is seen that results are close to the loci obtained through potential flow
theory. Coupled mode instability occurs at M� 2:30, which is very close to M� 2:29 from potential flow theory. With
further increase of M, any difference between the eigenfrequencies obtained through piston theory and potential flow
theory vanishes. Therefore, piston theory is a very good approximation of the air pressure at high Mach numbers.

Results discussed above concern the first six eigenmodes. From theoretical point of view, we can add single mode
flutter boundaries for more and more modes in Fig. 6: according to (16), (17), at least for large L each mode has its own
instability boundary Mn

noMoMnn

n , where Mn

n-1, Mnn

n -1 as n-1. In particular, even at higher Mach numbers, such as
shown in Fig. 10, there are some higher modes (with n46) that have positive Im on. However, at very high eigenmodes,
single mode flutter cannot occur in actual physical reality. This is due to influence of structural damping action (not
considered here), which increases unlimited, whereas Im on is limited as n-1.

5.2. Influence of m

As discussed in Section 4, asymptotic single mode flutter boundaries (17) do not depend on m. As m-0, Im on tends to
zero but keeps its sign. On the contrary, influence of m on coupled mode flutter is essential. Indeed, coupled mode flutter
occurs due to interaction of two eigenmodes through aerodynamic coupling. This interaction in its turn requires
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sufficiently high flow density, such that the flow is ‘‘strong’’ enough to significantly move the plate natural frequencies in
o-plane. Thus, taking of smaller m results in increase of flutter critical Mach number. In particular, this can be seen from
asymptotic coupled mode flutter criterion (18).

Results of calculations fully confirm these considerations. Figs. 6 and 11 show flutter boundaries for parameters
D¼23.9, Mw¼0, and

m¼ 6� 10�5, 12� 10�5, 24� 10�5, 48� 10�5, 96� 10�5,
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variation of m corresponds to the following change of the plate material and air densities (from the lowest to the largest m):
steel plate in the air flow at 10 000 m above sea level, steel at 3000 m, titanium at 3000 m, aluminum at 3000 m, carbon
composite at 3000 m. Comparing results for m¼ 6� 10�5, 12� 10�5, and 24� 10�5 in Fig. 6, it is seen that difference in
single mode flutter boundaries at M41:25 is negligible. At Mo1:25 slight influence of m on lower branch of the flutter
boundaries appears: lower Mn

n corresponds to higher m. However, even though m affects flutter boundaries at Mo1:25, the
difference is not really significant.

There is also a minor change of the second mode flutter boundary near intersection point of three boundaries: first mode
flutter, second mode flutter, and coupled mode flutter ðM� 1:41Þ. These boundaries intersect in one point, because
coincidence of two frequencies at Im o¼ 0 means that single mode flutter boundaries of coinciding modes also pass through
this point. Calculations show that the first mode boundary does not change with m, while second mode boundary slightly
deforms to pass through this point. Note that in small neighbourhood of the intersection point the three instability types (first
mode, second mode, and coupled mode) are hardly distinguishable, and their boundaries are shown for reference only.

Results for higher m in Fig. 11 show that m¼ 48� 10�5 and 96� 10�5 slightly affect single mode flutter boundaries at
any M. However, this influence is still minor: for M41:25 difference of upper and lower branches for these m does not
exceed DM¼ 0:03, while difference along left vertical section of the boundaries does not exceed DL¼ 5.

For coupled mode flutter, m is a significant parameter of the flutter boundary. In accordance with considerations above,
lower m for the same L gives less aerodynamic coupling of the modes, which results in higher L necessary for frequency
coalescence and following transition to coupled mode flutter. As m-0 and fixed L, mode coupling disappears (actually
moving to much higher M), and for any fixed M the plate becomes stable with respect to coupled mode (but not always to
single mode flutter).

It is interesting to note that coupled mode flutter occurs when coupling of the first and second modes takes place.
Generally, for higher L coupling of higher modes also takes place (Movchan, 1957). For m¼ 6� 10�5 and m¼ 12� 10�5

such a coupling has not been observed up to L¼600. However, at m¼ 24� 10�5, 48� 10�5, and 96� 10�5 mutual
interference of 3, 4, 5 and 6th modes takes place for L4450, 350, and 300, respectively. Loci of these eigenfrequencies in
the complex plane significantly differ from those shown in Fig. 7, and instability cannot anymore be classified as coupled
mode or single mode types. This higher modes coupling, however, is not important from practical point of view, because
the plate is already deeply unstable due to coupled mode flutter of the first and second modes. That is why we did not
study this behaviour in detail.
5.3. Influence of Mw on single mode flutter

According to asymptotic criterion (16), (17), Mach numbers at which the plate flutters significantly increase with
increase of Mw. For example, from (17) it is seen that even for relatively small tension stress s¼ 129:6� 106 Pa, flutter
critical Mach number minnMn

n increases from 1.051 for unstressed plate to 1.403. Hereafter parameters

D¼ 23:9, m¼ 12� 10�5, ð19Þ



Table 1
Change of single mode flutter boundaries for different in-plane tension,

according to asymptotic formulae (17), for parameters (19) as L-1.

s (Pa) Mw Mn

n Mnn

n

0 0.0 1.000 1.414

8.1�106 0.1 1.100 1.425

32.4�106 0.2 1.200 1.455

72.9�106 0.3 1.300 1.502

129.6�106 0.4 1.400 1.562
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and the plate length L¼300 are used in calculations. Shown in Table 1 are upper and lower boundaries obtained from (17)
for parameters (19) as L-1 (dependence of Mn

n, Mnn

n on n disappears as L-1).
Results of the numerical study are shown in Fig. 12 for Mw¼0.2, 0.3, and 0.4. First, for Mw¼0.2 some change of single

mode flutter boundaries is seen, especially for the first mode: upper branch moves down, lower branch moves up, and the
left vertical section of the boundary moves right. For other modes, both upper and lower branches move slightly up.

For Mw¼0.3 flutter boundary of the first mode moves into the region LZ500, and only very small instability area is
observed for 500rLo600. For the second mode boundary, upper branch moves down, lower branch moves up, left
section of the boundary moves right. Instability regions of the third–sixth modes move to higher M and become narrower.

For Mw increased up to 0.4, boundaries of both first and second mode move into the region L4600, so that they are not
in the range of parameters shown in Fig. 12. Instability regions of third–sixth modes move to higher M and become
narrower. Left sections of the third mode flutter boundaries also significantly move to higher L.

Thus, with increase of Mw we observe two trends in change of single mode flutter boundaries. First, both lower and
upper branches of instability boundaries move to higher M, which as L-1 are pretty close to values predicted by the
asymptotic formulae (17) (see Table 1). The second trend involves movement of the left sections of lower mode boundaries
to a higher L position, thereby increasing plate lengths at which single mode flutter occurs (this second trend is not
covered by the asymptotic theory).

Note that at MwZ0:2 coupled mode flutter boundary moves into the region M41:8 for any L, that is why this boundary
does not exist in Fig. 12 (see details in the next section).
5.4. Influence of Mw on coupled mode flutter

In the previous section we studied location of single mode flutter boundaries in the parameter space, when transition to
instability occurs without interaction between eigenmodes. At higher M and L such a transition occurs through
coalescence of eigenfrequencies, producing coupled mode flutter (Fig. 6). From asymptotic theory point of view, this
happens when eigenfrequencies of the first modes are located near the vertical section of the curve O (Fig. 5). This section
exists if the condition (18) is satisfied.

Formula (18) gives Mw of order of m1=3, and as m is typically a small parameter, even relatively small plate tension
eliminates coupled mode flutter. Also, (18) does not contain explicitly the plate length L. This means that taking Mw such
that (18) is not satisfied eliminates coupled mode flutter for any plate of given material, thickness and Mach number range,
no matter how long the plate is.

We now consider coupled mode flutter boundaries calculated using potential flow theory, shown in Fig. 13 for
parameters (19). For every L, there is a curve Mw ¼MwðMÞ, so that we have coupled mode flutter if MwoMwðMÞ, and no
coupled mode flutter otherwise (though single mode flutter is still possible). The curve Mw ¼MwðMÞ, obtained from
asymptotic formula (18), denoted ‘‘L¼1’’, lies above all the calculated curves for finite L, and in this sense it is ‘‘absolute’’
coupled mode flutter boundary: taking tension higher than (18), we guarantee stability of a plate of any length.
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An interesting feature is that one needs much less tension to fully eliminate coupled mode flutter comparing to single
mode flutter. Indeed, from Fig. 13 it is seen that Mw¼0.15 is enough to avoid coupled mode flutter for any L up M¼3.0,
whereas at Mw¼0.4 there is still a region of single mode flutter in Fig. 12 for L4174 and Mo1:74.

5.5. Influence of D

Usually panel flutter problem is considered in the context of flight vehicle skin panels. In case of metal panel of aircraft
moving in earth’s atmosphere, dependence of dimensionless stiffness D on the material and the flight altitude is
insignificant. The reason is that D is a function of E=rm ratio, which does not change much for structural metals, and speed
of sound a, which only slightly depend on the altitude. However, dimensionless stiffness can be essentially different if the
panel is made of composite (density is lower, while Young’s modulus in the fibre direction is higher than for metals), or if
the flow parameters are different from atmospheric (flows in nozzles of jet and rocket engines, flight vehicles moving in
other planet’s atmosphere, etc.). Therefore, study of influence of D may be useful in some applications.

Shown in Fig. 14 are flutter boundaries for Mw¼0, m¼ 12� 10�5, and D¼11.95, 23.9, 47.8. Main effect of the stiffness
increase is shift of the flutter boundaries to the right. Note that coupled mode flutter boundary is shifted more than single
mode flutter boundaries, though the shift distances are of the same order. As before, coupled mode flutter boundaries are
well approximated by results obtained through piston theory.

6. Comparison of flutter boundaries with other works

Panel flutter problem for simply supported panels has been solved analytically by Movchan (1957). The following
sufficient stability condition has been obtained (we use notations of the present paper):

Mo
D

mL3

8p3

3
ffiffiffi
3
p 5þ

L2M2
w

2p2D

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

L2M2
w

2p2D

s
: ð20Þ

Movchan used this version of piston theory:

pfW ,og ¼ m �ioWðxÞþM
dWðxÞ

dx

� �
:

Comparing this formula with (8) and considering that coefficient of dWðxÞ=dx is responsible for coupled mode instability,
we conclude that sufficient stability condition obtained through (8) can be derived from (20) by changing M to
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Results of calculations using (20) and (21) are shown in Fig. 13. It is seen that sufficient stability condition (20) is a good
approximation of exact coupled mode flutter boundary at M42:5; this was pointed out by Movchan (1957). Fig. 13 also
shows that modification (21) correctly predicts coupled mode flutter boundary in much wider range, even at low M41:1,
where piston theory of any modification is, strictly speaking, inadequate. Therefore, we conclude that piston theory in
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form (21), and only in this particular form, accurately predicts frequency coalescence at any M41:1, though being
inapplicable to prediction of single mode flutter.

It is also interesting to note that for long plates, limit of (21) as L-1 exactly coincides with asymptotic coupled mode
flutter criterion (18), obtained using Kulikovskii’s theory of global instability.

Let us now compare single mode flutter boundaries. First, in Fig. 15 comparison of exact (calculated herein) and
asymptotic boundaries (17) is shown. Two differences are obvious. First, exact boundaries have minimum in L, while
asymptotic boundaries, according to (17), extend to L¼0 (meanwhile, Mn

nðLÞ, Mnn

n ðLÞ-1). Second, exact Mn

nðLÞ are slightly
lower than the asymptotic ones. This difference is smaller for higher mode number n. Upper boundaries Mnn

n ðLÞ are in
excellent agreement.

Linear flutter boundaries of finite simply supported plate through potential flow theory were studied by Nelson and
Cunnigham (1956), results are presented in their Fig. 12. They studied aluminium panel at sea level; dimensional
parameters are E¼ 7� 1010 Pa, n¼ 0:3, rm ¼ 2700 kg=m3, a¼340.3 m/s, r¼ 1:225 kg=m3. Corresponding dimensionless
parameters are as follows:

D¼ 20:5, Mw ¼ 0, m¼ 45:4� 10�5:
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Closest parameters available for comparison in the present study are

D¼ 23:9, Mw ¼ 0, m¼ 48� 10�5:

Corresponding flutter boundaries from Fig. 11 are compared with Nelson and Cunningham’s results in Fig. 16 in terms of
1=L versus M. It is seen that Nelson and Cunningham’s horizontal section of the boundary corresponds to coupled mode
flutter; their vertical section corresponds to single mode flutter in the second mode. Higher modes are not presented in
their study, as they used two-mode Galerkin approximation. From Fig. 16 it is seen that flutter in higher modes essentially
widens whole instability region of the panel.

Also, several nonlinear studies are available for comparison. First, Dowell (1967) reported that single mode flutter in the
first mode has been observed for Mo

ffiffiffi
2
p

for a very small dynamic pressure, which in notations of the present paper is
equivalent to very small m. At M4

ffiffiffi
2
p

direct transition to coupled mode flutter occurred, with no higher modes
oscillations.

However, Bendiksen and Davis (1995) (also reported by Bendiksen and Seber, 2008) observed transition from single
mode flutter in the first mode at M¼1.2 to oscillations in several higher modes simultaneously at M¼1.4; shape of the
plate deflection was changing with time from the fourth to the fifth mode shape and vice versa. At M¼1.5, single mode
oscillations in the fifth mode only were detected. Such a behaviour was explained by possible influence of ‘‘aerodynamic or
simply numerical noise’’, however results of the present paper show that most likely the authors observed single mode
flutter in higher modes.
7. Conclusions

Flutter boundaries of simply supported plates have been studied using potential flow theory. Two types of flutter have
been observed: coupled mode and single mode flutter. Coupled mode flutter boundaries are in full agreement with known
results obtained using piston theory for Mb1. It has been shown that piston theory in form (8), or, equivalently, (2),
correctly predicts coupled mode flutter boundaries even for low supersonic Mach numbers ð1:1oMo1:7Þ.

In contrast to coupled mode flutter, single mode flutter cannot be investigated using piston theory. In fact, piston theory
has been found to be inadequate to analyze or to predict the single mode flutter. It has been shown that this type of flutter
can occur in several modes simultaneously. Meanwhile, each mode has its own flutter region in the parameter space. For
the first mode this region (in the case of an unstressed plate) is typically in 1oMo

ffiffiffi
2
p

; however, for higher modes single
mode flutter occurs at higher Mach numbers, up to M� 1:75 for the sixth mode (for the parameters studied herein). Flutter
regions of higher modes are located in higher Mach number range. Theoretically, for any M41, when given a plate of
appropriate length, there exists an eigenmode, which is unstable at this M, and the actual occurrence of this flutter in
physical reality is only limited by the structural damping properties of the plate, and its nonlinear properties.

For plates pre-stressed by in-plane tension, single mode flutter boundary for each mode shifts to a higher range of M. At
the same time, in M–L parameter plane, flutter regions of lower modes move to higher L region.

The occurrence of single mode flutter is not influenced by gas density. This means that panel exposure to varying gas
types of differing density will result in no (or insignificant) changes to the flutter boundaries. In contrast, the phenomenon
of coupled mode flutter is highly influenced by gas density.

From a practical standpoint, the most important aspect of single mode flutter is to recognize that this flutter
phenomenon can occur at lower Mach numbers and for shorter plate conditions; thereby it is able to exist at conditions
where the occurrence of coupled mode flutter would be impossible. Typical aeroelastic analysis methods using piston
theory are inadequate to investigate or predict the occurrence of single mode flutter. Therefore, aeroelastic analysis that
relies solely upon piston theory for investigative study, can neglect the occurrence of single mode flutter, leading to the
potential for fatigue damage and destruction of skin panels on a flight vehicle.
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