ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ 2005

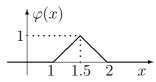
- 1. (3) Справедлив ли принцип максимума для уравнений (здесь $(t,x) \in \mathbb{R}^2$):
 - a) $u_{tt} u_{xx} + u = 0$;
 - 6) $u_{tt} + u_{xx} + u = 0$?
- 2. (2) Рассмотрим уравнение колебаний неоднородной струны

$$u_{tt} = a(x) u_{xx},$$
 $a(x) = \begin{cases} 1, & x > 0, \\ 2, & x \leq 0, \end{cases}$

с начальными условиями

$$u\Big|_{t=0} = \varphi(x), \qquad u'_t\Big|_{t=0} = 0,$$

график функции $\varphi(x)$ имеет вид



Нарисуйте график решения в момент t = 5.

3. (3) Рассмотрим краевую задачу для уравнения Лапласа в единичном квадрате $\square = [0,1] \times [0,1]$ на плоскости:

$$\Delta u = 0 \quad \text{B} \quad \square,$$

$$u\Big|_{x=0} = \sin y, \qquad u\Big|_{x=1} = \cos y, \qquad u'_y\Big|_{y=0} = u'_y\Big|_{y=1} = 0.$$

Докажите, что $|u(x,y)| \leqslant 1$.

4. (2) Пусть u(t,x) — решение уравнения

$$u_t - u_x + 2u = 0$$

в смысле теории обобщенных функций, равное гладким вплоть до границы функциям в областях $t>\varphi(x)$ и $t<\varphi(x)$ соответственно, и разрывное при $t=\varphi(x),\ \varphi(x)$ — гладкая функция. Найдите $\varphi(x)$.

5. (5) Рассмотрим краевую задачу

$$u_t=u_{xx}, \quad t\in\mathbb{R},\ x\geqslant 0,$$

$$u\Big|_{x=0}=\varphi(t), \qquad |u|\leqslant M \quad \text{при } t\in\mathbb{R},\ x\geqslant 0,$$

 $\varphi(t)$ — ограниченная непрерывная функция. Единственно ли решение этой задачи?

6. (3) Рассмотрим краевую задачу для уравнения теплопроводности

$$u_t = u_{xx}, \qquad u\Big|_{x=0} = u\Big|_{x=1} = 0, \qquad u\Big|_{t=0} = \varphi(x) \in C_0^{\infty}[0, 1].$$

Нам известна функция

$$\psi(x) = \int_{0}^{T} u(t, x) dt.$$

Можно ли восстановить функцию $\varphi(x)$, зная $\psi(x)$?

7. (2+2) Функция u(t,x) удовлетворяет уравнению

$$u_{tt} - u_{xx} = 0$$
 B $\square \setminus \ell$, a) $\begin{bmatrix} \ell \\ 0 \end{bmatrix}$

- $\square = [0,1] \times [0,1], \ \ell$ отрезок строго внутри \square . Возможно ли доопределить u(t,x) до решения уравнения $u_{tt} u_{xx} = 0$ в \square в случаях (a) и (б) соответственно?
- 8. (2) Пусть функция $u(t,x) \in L^1_{loc}(\mathbb{R}^2)$ является решением уравнения

$$u_t - u_x = 0$$

в смысле теории обобщенных функций. Верно ли, что существует $f \in L^1_{loc}(\mathbb{R}^1)$, такая, что

$$u(t,x) = f(t+x)$$
?